
Page 1 of 9

Centre for Computational Finance and Economic Agents
http://www.essex.ac.uk/ccfea/

University Of Essex, UK.

EASSS Lab Exercise: The Java Agent Based Modelling Toolkit (JABM):

El Farol Bar Problem

Background Reading

Inductive Reasoning and bounded Rationality

W. B. Arthur, "Inductive reasoning and bounded rationality," The American Economic Review,

vol. 84, no. 2, pp. 406-411, 1994. [Online]

XML Tutorial

If you are not familiar with XML files, there is an online tutorial on XML:

http://www.w3schools.com/xml/default.asp

Introduction to Dependency Injection and the Spring framework

 Dependency Injection Demystified

 http://www.theserverside.com/tt/articles/article.tss?l=SpringFramework

Pre-requisites: Setting up the Eclipse IDE with the JABM Software

Step 1. Create a workspace on your J: drive

You will first need to a create folder called a workspace to hold all of your work. Create a folder on

your J: drive called workspace_JABM.

Step 2. Start up the Eclipse IDE

When prompted to select a workspace, for the summer-school you should choose the folder created

in the previous step.

J:\workspace_JABM

Once eclipse has started you can close the welcome screen.

http://www.essex.ac.uk/ccfea/
http://www.jstor.org/stable/2117868
http://www.w3schools.com/xml/default.asp
http://jamesshore.com/Blog/Dependency-Injection-Demystified.html
http://www.theserverside.com/tt/articles/article.tss?l=SpringFramework

Page 2 of 9

Step 3. Import the JABM zip file into Eclipse

Eclipse has a feature that allows you to import existing projects from ZIP files. The file jabm-

0.8_01.zip can be imported directly into Eclipse as an existing project. You can find this file on

your EASSS pen drive, or alternatively download it from http://jabm.sourceforge.net/.

In eclipse click the ‘File’ button and the option ‘Import...’. In the subwindow hit the ‘plus’ sign next

to ‘General’ and click on ‘Existing Projects into Workspace’ and then hit ‘Next’.

Highlight the ‘Select archive file:’ button. Then browse to the location of ‘jabm-0.8_01.zip’ and

‘Open’. Hit ‘Finish’.

In the eclipse ‘Package Explorer’ (which is by default on the left of the eclipse window) you should

see two packages:

1. Jabm

2. Jabm-examples

Step 4. Viewing the example

Click on ‘Window’ option on taskbar at the top of eclipse window. Choose ‘Open Perspective/Other’

click on ‘Spring’ and hit OK to get the Spring perspective running.

Expand ‘jabm-examples’ in the package explorer on the left. Expand the config directory and double

click on ‘elfarolbar.xml’.

In the central pane of the eclipse window where the ‘elfarolbar.xml’ xml configuration is displayed.

Right click in the central pane and choose ‘Open With/XML Editor’.

You are now ready to proceed to the lab exercises.

Configuring simulations using JABM and Spring
We will use a framework called JABM to implement the El Farol Bar model.

JABM uses the Java Spring framework to configure our main application object

SimulationController. SimulationController is a class that is already provided for

you by the jabm library in the package net.sourceforge.jabm.

The spring framework provides an object factory which initialises the objects in our simulation

based on the settings in an xml configuration file. It implements a design pattern called Dependency

Injection. The central principle is that you should let the spring framework take care of instantiating

all the instances of objects used in your simulation and setting their attributes- you should not write

any code to perform object initialisation in your own classes. Thus we say that dependencies

between objects are injected into the system instead of being created by the system itself.

Each instance of an object in the simulation is represented by an entity called a bean. If you browse

the ‘elfarolbar.xml’ file you will see many different beans defined using the <bean> tag, for example:

 <!-- The prototype used to manufacture patron agents -->

 <bean id="patronAgent" scope="prototype"

http://agile.csc.ncsu.edu/SEMaterials/tutorials/import_export/
http://jabm.sourceforge.net/
file:///C:/Users/njwray/AppData/Local/Temp/jabm.sourceforge.net
http://www.springsource.org/
http://sourcemaking.com/design_patterns/abstract_factory
http://jamesshore.com/Blog/Dependency-Injection-Demystified.html
http://jamesshore.com/Blog/Dependency-Injection-Demystified.html

Page 3 of 9

 class="net.sourceforge.jabm.examples.elfarolbar.PatronAgent">

 <property name="strategy" ref="adaptivePredictionStrategy" />

 <property name="barCapacity" value="60" />

 <property name="scheduler" ref="simulationController" />

 </bean>

The above bean definition specifies how we are going to “manufacture” the agents in our

simulation. The class property of the bean definition specifies the class we are going to use to

represent agents, ie: net.sourceforge.jabm.examples.elfarolbar.PatronAgent. If we

wanted to run a simulation with a different type of agent we could substitute a different class name

here.

Exercise 1
Browse through the bean definitions in the XML file in order to familiarise yourself with this

notation. Open the Spring Explorer view in Eclipse by choosing the Window menu option then

Show View/Outline. In the Outline window expand ‘beans xmlns=http: ... to get a list of

beans. Notice that Eclipse understands the bean definitions and allows you to quickly find a

particular bean. If you click on patronAgent in the Outline window the bean definition in the

XML file above is found and highlighted.

A. Hold down the CTRL key and hover over the class name in the bean tag in the central

window. Notice that Eclipse will open the source-code for this class if you click on it.

B. In the central window return to elfarolbar.xml and the patronAgent bean. Hold down

the CTRL key and click on the text adaptivePredictionStrategy . Eclipse should

take you to the corresponding bean definition for the agent’s strategy. Return to the

patronAgent bean.

C. Hold down the CTRL key and click on the text barCapacity. Eclipse should take you to

the source-code for the setBarCapacity() method.

Every bean has a unique id. This allows us to refer to other beans when we are initialising a

particular class. For example, in the above definition we are setting the agent’s strategy based on

another bean definition: adaptivePredictionStrategy, which refers to the id of another bean

definition.

Once we have specified which class we want to use, we then specify how to configure the attributes

of this class. The property tags refer to attributes that we can set using setters and getters. For

example, the PatronAgent class has an attribute called barCapacity that can be set through

the setter setBarCapacity(int). When spring configures an agent it will look for a setter

corresponding to the name of the attribute we are configuring and call it to initialise the object.

The scope attribute specifies whether or not we are allowed to instantiate multiple instances of

this class. If we are only allowed to instantiate a single instance, then the scope should be set to

singleton. This is the case, for example, when we configure the PRNG used in the simulation:

Page 4 of 9

<bean id="prng" class="cern.jet.random.engine.MersenneTwister64"

 scope="singleton">

 <constructor-arg>

 <bean class="java.util.Date" />

 </constructor-arg>

</bean>

If the scope is not specified then the default is singleton. The alternative is to use

scope=”prototype” as we did in the agent bean definition (since we will use many instances of

the agent class to represent each agent in the simulation).

We will use a library called jabs that provides some generic classes useful for agent-based modelling.

The classes we will use are illustrated in the following UML diagram:

Page 5 of 9

Page 6 of 9

We have extended these classes with classes which implement functionality specific to the El Farol Bar problem as follows:

Page 7 of 9

We use dependency injection and the spring framework to configure this system. The top-level

object is the SimulationController. By configuring the attributes of this class we can set up

our simulation model. We do this recursively. So one of the attributes of the

SimulationController is simulationBeanName which is set to

repeatedSimulation. If you navigate to repeatedSimulation it has a property called

population if you navigate to population you will see it has a property called size which is given

the value 100. This bean represents the population of agents encapsulated in the class

net.sourceforge.jasa.sim.Population. We can configure the Population and

other simulation properties through the xml definitions until we have configured a complete

simulation model right down to the attributes of individual agents.

Exercise 2
Browse all the beans in the model and familiarise yourself with the way the code works. Use CTRL

click to consult the corresponding Java source code. (Note: When pressing the CTRL key the eclipse

can take a little time to react).

Exercise 3
Run the simulation by creating a new Eclipse run configuration to execute the class:

net.sourceforge.jabm.DesktopSimulationManager

Click ‘Run’ on the menu bar and then click on ‘Run Configurations …’. In the ‘Project:’ pane type:

 jabm-examples

In the ‘Main class:’ pane type:
 net.sourceforge.jabm.DesktopSimulationManager
Click on the ‘(x)=Arguments’ tab. To tell the simulation controller which configuration file to use,
specifying the following in the’ VM arguments’ box:

-Djabm.config=config/elfarolbar.xml

This specifies the name of the Spring beans configuration file.

Hit ‘Apply’ and then ‘Run’ at the bottom of the window. If everything is set up correctly then the
simulation should run.

In the simulation window you will see two tabs –

1. Strategy execution frequency (population) tab which displays the proportion of the
population adopting a particular strategy rule over time.

2. Bar attendance displays the number of patrons visiting the El Farol bar over time.

The top left hand corner holds the run, stop and pause buttons.

http://en.wikipedia.org/wiki/Recursion
http://help.eclipse.org/help32/index.jsp?topic=/org.eclipse.jdt.doc.user/tasks/tasks-java-local-configuration.htm

Page 8 of 9

Exercise 4

In ‘elfarolbar.xml’ find the population size try to use the ‘Outline’ window to navigate and increase it
from 100 to 150 and run the simulation. Can you see the difference it makes in the ‘Bar Attendance’
tab. Change the population back to 100.

Exercise 5

Create a new strategy by copying the MovingAveragePredictionStrategy and modifying

the elfarolbar.xml bar to call your class instead of the original

MovingAveragePredictionStrategy class.

1. In the ‘Package Explorer’ navigate to ‘jabm-

examples/src/net.sourceforge.jabm.examples.elfarolbar’ highlight

‘net.sourceforge.jabm.examples.elfarolbar’ then go to ‘New’ on the taskbar of the eclipse

window and click on ‘Class’. In the ‘Name:’ pane enter out new class name

NewMovingAveragePredictionStrategy. In this window the ‘Source folder: pane

should read ‘jabm-examples/src’ and the ‘Package:’ pane should read

‘net.sourceforge.jabm.examples.elfarolbar’. Hit the ‘Finish’ button at the bottom of the

window.

2. The NewMovingAveragePredictionStrategy class should appear in the middle

window (if it doesn’t you can double click on it in the ‘Package Explorer’ window). We want

to copy the contents of the original MovingAveragePredictionStrategy class to

our new class. Open MovingAveragePredictionStrategy by double clicking on it

in the ‘Package Explorer’ window. Try to copy and paste the contents to our new class

BEWARE THE CONTENTS ARE NOT GOING TO BE IDENTICAL! Things to remember when

copying a. The class name in our new class definition is our new class name

NewMovingAveragePredictionStrategy and this class extends

AbstractPredictionStrategy. b. The toString method needs to change to return

‘NewMovingAveragePredictionStrategy ...’ instead of ‘MovingAveragePredictionStrategy

....’.

3. Go to ‘elfarolbar.xml’ we need to change every occurrence of

MovingAveragePredictionStrategy to

NewMovingAveragePredictionStrategy. The beans

strategyExecutionFrequency, MovingAveragePredictionStrategy and

ruleFactory will need to change. Note: Keep the bean ids consistent you will note that

the bean ids start in the ‘elfarolbar.xml’ with a lowercase letter while the class names start

with an uppercase letter.

Rerun the simulation, since we have not changed the, the functionality of the moving average

calculation we should see no difference. We have though shown that we can amend the

‘elfarolbar.xml’ to build the simulation with our new class

NewMovingAveragePredictionStrategy. In the ‘Strategy execution frequency

(population)’ tab you will see in the list of strategies in the middle pane our new class

Page 9 of 9

NewMovingAveragePredictionStrategy which is listed instead of the original

MovingAveragePredictionStrategy.

Exercise 6
Amend the bean definition for the class NewMovingAveragePredictionStrategy (use the

‘Outline’ window to find it). Set the windowSize property to 50. (Hint: use value = “50” following

other examples in the xml). Rerun the simulation.

Exercise 7
Update the bean definition for ruleFactory so that agents are able to use an additional 20 rules

of type NewMovingAveragePredictionStrategy with random window sizes (that is change

the windowSize from value=”50” back to

ref="drawFromWindowSizeDistribution"). (Hint: To change the number of rules there

are two places in the elfaronbar.xml that you will need to modify; bean adaptivePredictionStrategy

and numRules (20 to 40) and bean ruleFactory <value>5</value> to <value>25</value> the bean id

of NewMovingAveragePredictionStrategy). When you rerun the simulation you should

find that the time series contains more randomness.

Exercise 8
Reset the number of rules used to their original values. Modify the maximumRounds property of

the repeatedSimulation bean from 500 to 10000 and run the simulation. In longer runs do

you see any evidence of cycling?

Exercise 9
The original paper states:

 “The predictors self-organize into an equilibrium pattern or ‘ecology’ in which, on average 40

percent are forecasting above 60, 60 percent below 60” W. B. Arthur, "Inductive reasoning and bounded rationality,"

The American Economic Review, vol. 84, no. 2, pp. 406-411, 1994. [Online]

Create a new class which implements the interface net.sourceforge.jabm.report.Report to check

whether this is the case in our simulation.

http://www.jstor.org/stable/2117868

